织梦CMS - 轻松建站从此开始!

新世纪彩票平台注册-新世纪彩票官网登录【欢迎体验】

当前位置: 主页 > 前往官网 >

个性化高端科研实习项目_2017年美国研究生留学申请必备背景提升方案

时间:2017-12-19 04:40来源:未知 作者:admin 点击:
本项目由来自斯坦福科研导师亲自指导,对新古典宏观经济学或者宏观金融方面进行最全面的指导,并将带领学生层层深入,开展阶梯式的研究,学生可以学到最精华也最高阶的经济金融知识,研究绝对高端的模型和经济理论,本项目为将来进入名校和攻读PHD都有强大的帮助。学生可以全面的学习如何进行金融研究,从阅读金融文献开始,了解当今金融学研究的前沿领域,并对投资者行为有深入了解。同时,学生可以在项目中锻炼自己,提高编程和处理数据水平。实验室的研究方向涵盖了超导体研究的各个方面,即新超导体的探索,高温超导机理和相关物理研究,薄膜制备以及超导薄膜器件应用研究等。实验室的工作一直处于国际超导研究的前沿,频繁在国际权威杂志上发表有影响的论文并多次在国际超导大会上作邀请报告。实验室以物质表面和界面为主要研究对象,使用高精度原子尺度实验工具,与理论方法密切结合,开展与信息科学、纳米科学和能源科学有直接联系的材料制备、物性表征、功能调控等方面的研究。当前研究集中于发展原子级精度控制方法制备低维与纳米结构,发展多种自由度、高分辨率新型表征技术,以此为基础研究表面/界面各种局域效应及其集体行为、微观结构/掺杂/缺陷等对体系宏观性质的影响、以及相关的电子激发态动力学特征等。随着新材料的不断出现、材料结构的尺度和维度向着更小的方向发展,表面物理研究的重要性变得日益突出,已经成为一个交叉学科的新的生长点。实验室的研究方向是:以磁性物理的基础研究为指导,以有重大应用背景的材料--稀土过渡族金属间化合物和氧化物、自旋电子学等为重点,开展物质的基本磁性和磁电、磁热、磁光等效应研究,探讨从微观电子结构、介观、界面及复合相到宏观磁性之间的内在联系,探索新材料和新的人工结构材料的磁性物理学。实验室现分五个课题组开展相应的工作:实验室为从事光物理基础研究及应用基础研究的实体,主要研究方向是光与物质相互作用的基础研究,同时开展新材料在光学,尤其是在光子学领域的应用基础研究,即一方面重视光物理本身的研究,另一方面将现代光学的方法和技术引入凝聚态物理和材料科学中去,开拓几种新材料在高技术产业中的可能应用。实验室瞄准国际科学前沿,在激光物理、光子晶体、非线性光学、量子光学、强场物理及超快过程研究等方面开展了在国内外有相当影响的基础和应用研究工作。在激光器件和新型薄膜材料研究上也有较强的力量,能够研制并提供多种超短脉冲激光器件和全固态激光器件,并取得了具有国际先进水平的成果。此外将光学和物理学的方法、手段应用于生物系统也是目前正在发展的重点学科方向。与凝聚态物理与材料科学紧密结合是光物理实验室研究的重要特点。实验室在深入开展电子显微学理论和实验方法研究的基础上,注重其在凝聚态物理学、材料科学及生命科学中的应用。目前实验室的研究工作主要涉及电子全息、电子能量损失谱,高分辨电子显微学,会聚束电子衍射,准晶、纳米材料微结构分析、多种无机材料的结构和相图,巨磁电阻多层膜及隧道结以及强关联材料的电荷有序化研究。利用计算机模拟和理论模型化方法对实验的数据进行深入分析。实验室致力于纳米材料及其物理以及其在信息器件和能源器件中应用的基础研究,目前由四个研究组构成,实验室的运作特色是加强各研究组之间的交叉合作,发挥集体智慧,凝炼明确的科研目标,力争取得具有重要影响的创新性的科研成果。主要的研究方向是:以纳米材料的合成和生长为基础,利用先进的表征手段,研究其物性以及制备纳米材料功能器件,开展纳米材料在信息、能源、及生命科学等领域内的应用基础研究。四个研究组的研究方向包括纳米信息材料和器件物性、单分子及纳米结构的电子输运研究、纳米器件及其物理、低维电子系统。在传统科学日臻完善的今天,为了能创造出更多的机遇以取得新的研究突破,非常规的极端实验条件变得越来越重要。实验室是由原中科院极低温物理开发实验室和物理所部分低温、高压方面的研究组联合组建而成的,在利用这些极端条件进行各种物理问题的研究方面已积累了丰富的经验,并广泛应用各种极端条件的综合交叉,具有自己的研究特色。研究方向包括强关联电子体系的低温物性研究、重费米子材料的理论和实验研究等。实验室自成立以来,本着"开放、流动、竞争、联合"的创办方针,努力造就超越前代学术水平的优秀青年理论物理学研究人才,并积极开展与国际各理论物理中心的交流,已初步拥有一支精干研究队伍。研究方向包括低维多体凝聚态系统的理论研究、固体与纳米材料物性计算研究、计算凝聚态物理、低维受限体系的新奇量子现象研究、玻色-爱因斯坦凝聚及量子信息等。当前,信息技术的发展遇到了三大瓶颈。首先,随着信息全球化的飞速发展,世界的信息存储需求量不断激增,信息存储器件的存储容量需求在大幅度提高(信息存储瓶颈);其次,随着信息处理芯片集成度的不断提高,经典计算机的运算速度和计算能力将达到极限(计算能力瓶颈);第三,人类计算能力的不断提高和数学的不断进步,使得现有的信息安全系统面临严重的威胁(信息安全瓶颈)。实验室将瞄准信息时代我国社会发展的重大需求,探索建立我国具有自主核心技术的信息存储容量大、信息处理速率高和信息传输绝对安全的信息的量子技术和工程体系。以空天科技发展为主要应用背景,致力于高温气体动力学的基础问题研究。实验室面向航空航天和国民经济的重大战略需求,以突破空天科技的关键技术为主要目标,研究在高温、高超声速极端条件下,具有分子振动和转动激发、分子离解、电离等内态变化介质的复杂流动,完善高温气体动力学理论体系,支撑高超声速关键技术的突破。作为微重力科学实验室,国家微重力实验室目前的研究领域涉及微重力科学的主要方向,包括微重力流体物理(简单流体的运动、多相流和复杂流体),微重力燃烧科学(燃烧机理和空间站防火),空间材料科学(凝固过程、晶体生长和模型化研究),空间生物技术与生命科学(生物力学、细胞-分子生物学和纳米生物技术),在流体物理、燃烧、生物力学和先进诊断技术,以及与材料科学和生命科学的交叉与融合等领域开展了有特色的创新性研究工作。实验室以流体与工程结构的相互作用、流体与岩土体的相互作用、环境流动与多过程耦合以及油气水沙相互作用等四个方向为重点,多年来在海洋石油采输与分离技术、先进水中航行体、流域水环境与区域沉降、滑坡灾害监测和高速列车气动效应等方面作出了重要贡献,并形成了一支团结协作的高水平研究队伍。与此同时,立足自主创新,研发了系统配套的实验装置,并建设了大规模数值模拟平台和软件。实验室致力于促进系统力学这一新的力学研究思想,并为重大工程技术问题提供全新分析工具、变革性技术以及系统解决方案,为国家安全、国民经济和社会发展作出基础性、战略性和前瞻性贡献。先进制造工艺力学重点实验室的研究定位与科学发展,秉承了钱学森先生创立的物理力学及其引申的工程科学思想、宏观认知上的系统科学观。实验室成立十余年间,在充分继承物理力学研究积累的基础上,通过有跨度的学科交叉、融合与会聚性的综合研究,集中聚焦空天飞行、先进交通与装备制造中的若干关键技术需求,取得了大量科学特色显著、工程先导影响明显的学术成就,包括激光毛化特种工艺及其工程化技术、物质表面涂镀层与强化工艺技术、激光制造工艺力学、激光焊接工艺技术、复杂飞行动力学与控制、机动车综合性能检测产业化技术等。实验室将继续在空天飞行、先进交通、装备制造等新的发展需求方面,以创造和前瞻带动为己任,着力于力学机理的新探索和关键性能可控机制的新发现,开展高性能制造核心工艺技术和复杂飞行控制的方法创新、技术创新和工程集成创新。分子反应动力学是化学的前沿基础研究领域。它应用现代物理化学的先进分析方法,如激光、超高真空、光电子检测技术和计算技术等,在原子、分子的层次上研究不同状态下,如气相、凝聚相及界面体系等,和不同分子体系中,如单分子、双分子、纳米团簇和其他分子聚集体等,的基元化学反应的动态结构,反应过程和反应机理。实验室的研究方向不仅可以阐明分子反应过程中各种瞬态物种的结构、性质和作用,并能以态-态反应动力学,以及对分子相干态之间的作用的深入研究来阐明化学反应的内在规律。逐步从早期的研究气相化学中的基元化学反应,逐步发展到了对凝聚相和界面等领域中的分子相互作用和化学动态过程的研究,从而产生出了飞秒激光化学、非线性光学等新的研究方向。实验室面向国际科学前沿、结合国家经济需求,开展高分子化学与物理的相关基础科学与应用基础研究。研究领域涉及高分子的合成与表征,高分子多尺度相态、图案化和微观加工过程,高分子结构、动态及动力学,流变学性能及加工工艺,生物相容性和环境友好高分子系统,高分子凝聚态理论,计算及分子模拟等领域。同时开展高性能高分子材料、智能高分子材料、生物医用高分子材料、环境友好高分子材料等研究。有机固体重点实验室的研究方向为设计、合成新型有机分子和高分子,研究其聚集态的结构,分子间的相互作用,电子行为及相关现象,开展特殊物理、化学性质及分子器件等方面的研究。主要研究内容包括:实验室现阶段的定位和发展目标是:研究分子纳米结构的构筑规律和物理化学特性,发展以SPM为主的纳米检测技术,探索分子纳米结构和纳米材料的若干可能应用,凝聚和培养纳米科学研究的优秀人才,形成一支在纳米科学领域中具有重要影响力的研究群体。第二为选择性合成方法学与功能分子的合成研究:基于分子识别原理,发展富有特色的酶催化、仿生有机小分子催化和新型过渡金属催化体系,研究催化反应过程中分子识别、选择性调控的本质和规律,建立经济、绿色、实用的合成方法,并应用于具有重要生物活性分子和代表性功能有机分子的构建。生命有机化学国家重点实验室以"基于有机小分子的化学生物学"为研究方向。集成利用现代有机合成化学、物理有机化学、结构生物学和计算生物学、分子生物学、细胞生物学和分子药理学等学科的研究手段和方法,发展具有重要生物活性的有机小分子,并阐明其与生物大分子的相互作用,为解析生物大分子的功能,阐明生命过程中的信息传递和分子识别等做出贡献,为新医药和新农用化学品的研发提供先导化合物;同时发展创制这些化合物的有机合成和生物合成的新方法。金属有机化学国家重点实验室定位在基础研究,围绕金属有机化学学科前沿领域和发展趋势,紧密结合材料、环境、能源、医药等方向的国家重大需求,探索金属-碳(氢)键的形成、转化及淬灭的基本规律,发展导向有机合成和聚合物合成的金属有机化学,建成国际上有重要影响的金属有机化学研究基地。历年来,天然产物有机合成化学重点实验室在天然产物研究方面取得了非常突出的成绩。例如在青蒿素的结构、全合成及反应的系统研究的基础上,我国自主开发出具有高效、速效和低毒的抗疟新药―青蒿素,被世界卫生组织推荐为21世纪首选抗疟临床药物,并被广泛地使用;在天然资源的合理利用方面,利用我国丰富的甾体资源发展了我国甾体口服避孕药物的合成医药工业,极大地推动了计划生育工作的开展;而在植物生长调节剂和昆虫性信息素的结构鉴定和合成方面的研究为我国的农业发展作出了突出贡献。实验室的主要研究内容:精细化工实验室的研究领域:(1)均相不对称催化和生物活性的含氮化合物的全合成,主要研究芳香杂环化合物的不对称氢化;钯催化的不对称氢化;双功能醋酸银催化的不对称反应;不对称氢解反应;(2)杂环催化合成和不对称催化反应研究,主要研究含氮杂环的选择性合成研究;催化不饱和含氮化合物参与的环加成反应;不对称催化反应研究;(3)有机金属合成与催化,主要研究惰性化学键的催化活化;高活性过渡金属配合物催化剂研究;铁-催化的有机合成;(4)铜催化不对称反应研究,主要研究铜催化不对称炔丙基取代反应;铜催化不对称环加成反应;(5)金属络合物与分子活化研究,主要研究过渡金属有机络合物的合成;金属络合物与不饱和键的相互作用;金属催化C-H键活化与官能化;金属络合物中间体与底物相互作用;催化反应机理。化学激光实验室主要以短波长化学激光为研究方向,同时开展应用基础和应用研究。作为八六三重点实验室,化学激光实验室承担国家八六三短波长化学激光研究项目,设有超音速氧碘化学激光器、氧碘化学激光器新能源研究、氧碘化学激光器效率与光腔研究、光学元件加工与镀膜技术、化学激光新体系研究及测试技术、化学激光新型压力恢复系统技术等多项研究课题。该实验室在化学激光研究中取得了多项重大科技成果和奖励,许多研究成果处于国际先进水平。实验室的主要研究方向和目标:发展和利用国际先进的化学反应动力学实验技术和高精度动力学理论相结合的方法,深入细致地研究重要化学过程中的动力学机理,在原子、分子的层次和量子态分辨水平上揭示基本化学动力学规律,在分子反应动力学基础科学研究中做出重要创新成果,为重大科学技术进步提供基础知识支撑,保持反应动力学研究的国际领先地位,占据国际化学反应动力学研究的至高点。航天催化与新材料实验室结合航天航空需求,在吸波材料、相变材料、耗氧材料和热防护材料等领域也进行了广泛深入的研究,多种特种功能材料在航天和航空等领域获得实际应用。航天催化与新材料实验室以建设具有科技创新能力和辐射带动作用的航天材料工程中心为目标,不断开发新型航天航空催化剂,拓宽肼催化分解技术应用领域,重点发展无毒推进剂催化分解技术、凝胶推进剂催化分解技术和航天特种功能材料,大力加强学科基础建设,实现应用研究和基础研究并举。(1)富集材料和方法研究,内容是针对最新的分离模式及研究动态,侧重发展新型多维色谱理论;研究新型分离介质中溶质的保留机制;建立基于色谱热力学和动力学规律的色谱保留值和峰形的快速获取与预测软件系统。针对实践中发现的新问题及新现象加以研究,找出规律,并进一步指导实践。研究制备色谱、模拟移动床、径向色谱等新型大规模工业色谱的输运特征;建立有特色的研究方法;构建相关模型,对分析方法的发展与制备色谱的放大规模化生产提供理论依据。生物能源实验室的主要研究目标为:催化化学、有机化学和生物化工为学科基础,研究生物质转化中的关键科学问题,重点探索木质纤维素、糖类及多羟基化合物、油脂等生物基原料的转化途径和方法,为生物基液体燃料、大宗能源化学品和精细化学品生产,提供一条不依赖化石资源的新路线和新方法,为工业应用提供创新技术。太阳能实验室集中研究新型太阳电池与太阳能光—化学转化的重大基础科学难题;重点发展与光—化学转化和太阳能电池的关键材料与关键技术;建设国际一流的太阳能光—化学转化及太阳能电池研发平台,并为国家培养造就一批太阳能研究和技术开发的高层次专门人才队伍,争取5年内在太阳能光—化学研究与太阳能电池材料研究方向达到国际先进水平,建立国际水平的研究基地,10年左右将太阳能光催化制氢技术达到规模应用示范水平,并在国际上占有一席之地,聚集和培养高水平人才。储能技术研实验室的研究领域包括创新型电池技术、液流电池关键材料与核心技术、模拟及系统结构设计与模拟仿真、检测与评价、工程化开发与应用示范5个。实验室坚持研(研究所)、产(企业)、用(用户)密切合作的研究开发方针。以基础与应用基础研究、解决关键科学问题为重点,与国家电网、发电企业等用户合作开展应用示范。实验室坚持以人为本的方针,重视人才队伍建设,通过培养和引进相结合,加强团队建设。(1)高分子的高性能化,主要内容包括高分子的结构可控合成与性能优化.发展烯烃/双烯烃的活性配位聚合、烯烃与功能单体的高效共聚合、组成与结构可控的高分子控制合成新方法与新技术;利用分子设计原理和新合成反应,制备新型拓扑结构和有机/无机杂化链等特殊结构与性能的新型高分子;高分子反应加工.通过发展在线检测技术及理论和模拟方法,重点研究高分子反应加工中的机理与动力学、形态结构的形成和演变,建立结构与性能的关系,发展新型功能化、高性能化高分子材料。电分析化学国家重点实验室以分析化学和电分析化学的基础理论、方法和应用为主线,根据学科国际发展状况、国家基础研究规划和中科院知识创新的要求,发挥实验室的特点与优势,凝炼科技目标,确定实验室的主要研究方向为:生态环境高分子材料重点实验室在高分子化学与物理领域的长期研究积累,主要研究生态环境材料的高效制备、先进加工技术和工程化所面临的关键问题。以发展先进生物基材料和水资源环境材料为目标,重点开展以聚乳酸和二氧化碳基塑料为代表的生物降解高分子材料、以分离膜材料和絮凝材料为代表的水处理高分子材料、以聚苯胺防腐树脂和紫外光固化树脂为代表的环保涂层高分子材料、生态环境材料加工工程等四个方面的的应用基础和高技术研究,同时通过与国内外相关企业的产学研密切合作,迅速将实验室的高新技术向产业转移。合成橡胶重点实验室的总体定位:以基础研究-工程放大-成套技术开发为主线,基础科研和工程放大技术相结合,形成以关键技术为核心的集成技术,开发具有自主产权的大品种、高性能合成橡胶成套技术。立足于基础研究、突出优势领域、强化工程技术研究,开放研究、完善体系、整体推进。建设具有原始创新能力、具备关键技术和成套集成技术研发能力的科研团队。建成国内功能齐全、装备先进、具有较强竞争力的高性能合成橡胶工程技术中心。高分子复合材料工程实验室不仅致力于高分子化学、高分子物理、高分子工程等领域的研究,产出标志性成果,取得不可替代地位,而且在凝聚杰出人才和优秀研究团队、营造学术交流氛围、建设公共设施平台等方面,发挥示范和引领作用。实验室全体研究人员将努力把高分子复合材料工程实验室建成一个在国内具有重要影响力的从事战略高技术研究的重要实验室。绿色化学与过程实验室旨在丰富有机合成新方法和新技术,为精细化学品、药物中间体合成技术改进与创新,生物质原料的利用,促进吉林省化学工业快速发展,构建一个科研创新平台;培育一支绿色化学方面的优秀人才队伍。绿色化学与过程实验室的研究方向是以"有机化学与催化化学涉及的绿色合成新方法、新原理与新工艺为基础,以原子经济性反应与高效绿色分离为重点,生物质原料的催化转化技术为核心。从应用基础研究出发,瞄准国际科学与技术发展前沿,围绕精细化学品、药物中间体合成中所涉及的新方法和新技术,绿色介质中的高效生物质催化转化技术开展相关研究工作,综合实验室成员各自的学科特点与优势,以及长春应用化学研究所的工作基础,开展相关研究。稀土及钍清洁分离工程技术实验室工程技术中心的定位:针对稀土资源的高效利用和清洁分离,以南北两大稀土资源为主要研究对象,通过发展矿物前处理方法、新型溶剂萃取分离体系,研究工艺流程的有效衔接与贯通,发展清洁高效的稀土分离新工艺。通过开展稀土分离领域的热力学、动力学及分子界面反应机理方面的研究,力求在微痕量元素的高效分离方面取得创新性、突破性的成果,开发具有自主知识产权的高效清洁稀土分离工艺和高纯稀土、核纯钍制备技术,完成相关工艺和技术的"交钥匙"工程。中心将努力建成中科院乃至全国的稀土及钍资源清洁分离工程技术孵化中心,推动稀土分离行业向清洁、高效、高值化发展。羰基合成与选择氧化国家重点实验室的定位:瞄准国家在资源、能源和环境领域中的战略需求,根据催化科学的发展趋势,加强应用基础研究与应用研究的结合,突出羰基合成和选择氧化学科特色,开展绿色合成与清洁转化中的核心科学技术问题研究,成为在催化学科具有重要国际影响、为国家高新技术研究和相关产业技术进步做出重要贡献的国家重点实验室,并致力于培养相关领域的高级专门人才。精细石油化工中间体国家工程实验室的研究方向:关键精细石油化工中间体特种催化剂技术,如羰基合成高碳醇技术;油田添加剂技术,如降凝剂、阻焦剂、缓蚀剂等;综合利用炼厂气的技术,如催化裂化子气中低浓度乙烯和副产丁烯利用技术;难度较大的综合利用石油化工厂副产物的技术,如轻油裂解制乙烯装置副产C4、C5烃的综合利用技术;适合扩散到中小企业的技术。的长期目标是采用先进的选择氧化,酶催化以及不对称催化等催化合成技术,以油田气(包括气层气和伴生气)等尚未得到有效利用的资源,来发展精细石油化工中间体技术。西北特色植物资源化学重点实验室面向我国人口健康、西北区域经济及资源可持续发展的重大需求,以及相关学科的发展前沿,定位于西北特色植物资源化学及其利用的应用基础和高技术创新研究。以西北特色植物资源为对象,以植物资源开发、保护与可持续利用研究为主线,以分离分析、天然药物化学和化学生物学等为学科基础,重点开展植物成分分离分析新材料和新方法研究,西北特色植物资源化学成分的发现与表征研究,西北特色植物在医药保健中的应用与资源保护等研究。环境材料与生态化学研究发展实验室以再生资源和非金属矿高值化利用为背景,以"源于自然,用于自然,融于自然"的环境友好材料为方向,以材料在节水农业、生态恢复、水体净化和医药应用等方面的应用为目标,通过学科交叉、材料复合和技术集成,形成具有自主知识产权的专用材料和集成技术,为实现生态材料与环境的良性互动和协调发展提供技术支撑。煤转化国家重点实验室基于我国经济发展对煤炭高效洁净利用的需求,结合国际发展趋势,开展煤高效洁净转化为燃料及化学品和材料的科学和技术应用基础研究,重点研究核心科学问题和相关前沿课题,综合协调地发展煤化学、物理化学、材料和工程科学,为实现洁净煤技术的创新提供科学依据和工程化基础。炭材料重点实验室重点研究新型碳材料制备过程中的相关科学基础问题、关键技术和共性技术。实验室也注重对新型碳材料应用工程技术的研发。目前研究领域覆盖了高性能炭纤维及其复合材料、极端环境下高性能和多功能特种碳材料、碳质多孔功能材料、纳米碳材料等。近些年来,碳材料实验室共获国家级、省部级成果奖20余项,在一些重要研究方向已居国内领先的水平,如高性能炭纤维、高导热炭基材料、超高比表面积活性碳等。同时,一批研制成果已获得实用化。在油品的绿色加工和精制领域,已成功开发出了抽余油加氢生产溶剂油技术、重整生成油选择性加氢技术、裂解C5加氢生产发泡剂催化剂及其工艺技术、焦油加氢生产燃料油技术等,这些技术已推广到全国十余个大中型骨干石化企业,累计为国家增创利税10多亿元,另外,临氢异构化技术和汽、柴油深度脱硫绿色工艺过程也正在走向产业化。21世纪之初,煤炭间接液化国家工程实验室主要从事煤基合成液体燃料技术的研究与开发。在"十五"期间,该中心成功打通中试流程,中试装置累积运行5000多小时,获取了大量工程数据和上百吨合成粗油品,经加工处理的优质清洁柴油产品超过欧IV标准。该实验室申请专利58项,获授权专利27项,形成了拥有自主知识产权的煤基浆态床合成液体燃料技术。碳纤维制备技术国家工程实验室实验室的目标和任务是,围绕航空、航天、能源、交通领域的重大战略任务与重点工程对碳纤维复合材料的迫切需求,建立碳纤维制备工程化技术平台,开展聚丙烯腈聚合、原丝纺制、氧化碳化后处理等工程化技术研究,研制聚合反应器、纺丝专业设备、氧化炉等关键设备,开发自主知识产权的碳纤维制备工艺和配套材料并形成成套技术和应用评价体系,为聚丙烯腈碳纤维技术和产业的健康有序发展提供长期的技术支撑。实验室主要从事下一代先进新型存储器、碳基电子器件及集成、衍射光学元件、新型传感器、先进光学掩模制造与纳米加工技术等基础前沿领域研究,是国内最早开展微纳光刻与纳米加工技术研究的单位之一。研究室拥有一支在领域内有影响力的科研团队,拥有深厚的技术积累和一条先进完整的纳米加工科研线,具备扎实的纳米材料制备与加工、表征与检测基础和丰富工艺经验,在相关研究领域形成了自有特色。实验室主要从事系统开发、产品整合与核心技术研发工作,在物联网应用系统、射频与微波系统、高端卫星导航定位与通讯系统、下一代通信核心技术、高密度系统模块、芯片与模块自动测试等方面拥有雄厚的科研实力。实验室拥有完备的芯片、模块及微系统方面的设计和测试平台,成功研制了无线健康监护系统、物联网无线应用系统及节点终端、通信导航一体化收发系统、功率放大器数字预失真系统、高端卫星导航接收机系统和系列高密度微波模块、WCDMA手机功放芯片、物联网与无线传感网芯片、CMMB射频芯片等系列产品,取得了令人瞩目的成绩。其主要学科方向有:现代通信系统及网络,集成电路设计,高端卫星导航定位,高密度系统级模块,功率器件数字化非线性预失真技术。系统芯片设计重点实验室瞄准先进的嵌入式处理器及SoC集成新技术、低功耗和极低功耗设计技术、新原理集成电路设计及集成技术中基础性、前瞻性的科学问题,加强基础研究,探索新的嵌入式处理器及SoC集成技术,研究基于新原理、新结构、新工艺的嵌入式处理器;结合未来电子产品的需要,为产业提供技术支撑。(1)新型微体系结构的嵌入式多核处理器,定位于平台型嵌入式应用,通过构建CPU和DSP融合的多核处理器平台,结合先进工艺,研究高性能多核处理器和软件化方式实现通讯和多媒体标准的SoC芯片技术,解决多模多标准通讯和多媒体芯片设计平台一统化的问题;先进计算机系统实验室现有的研究方向包括:新型系统架构,软件可定义的硬件系统,集计算和通讯于一体的处理器芯片,异步消息式内存系统,一体化异构存储系统,高性能高扩展的数据中心网络,异构微内核操作系统,数据中心测试标准和测试程序,以及基于新型硬件架构的大数据和云计算等新型数据中心应用的开发、集成和优化等。网络技术实验室致力于新一代互联网的基础理论和关键技术研究。新一代互联网领域的研究主要集中在移动互联网和可信互联网两个方面。在移动互联网方面,分析移动互联网体系的业务模式和应用需求,开展移动互联网的体系结构、关键核心技术与重要应用技术的研究和试验,研制具有自主知识产权的关键设备和系统,构建可大规模运营的新型移动互联网综合业务平台,并参与相关标准制定;在可信互联网方面,开展新一代互联网的可信协议与体系结构、网络监测/分析/优化控制基础理论与关键技术、P2P计算与内容分发系统、接入控制与信任管理等研究,通过关键技术的突破与系统研发,为新一代可运维、可管理、高可信的互联网与业务系统提供技术支撑。此外,从计算科学与技术的角度,在信息采集、信息处理、信息传输与信息管理等各个层面上,研究无线传感器网络的基础科学问题和关键技术,并将研究成果转化到实际系统应用中。研究重点包括新一代传感网体系结构。实验室以研发支持移动计算的未来新型智能绿色无线终端为核心,主要从一体化融合终端、面向智能移动业务的共性技术和宽带移动计算系统三个方面开展研究,重点突破低功耗器件与应用平台、多模智能感知与交互以及支持移动云计算的协同移动通信等关键技术,为北京市及我国新型移动终端产业发展提供原创共性核心技术及原型系统,为我市信息产业结构向高端跨越做出贡献。重点实验室目前设6个实体:数字媒体研究中心,主要从事视觉计算、模式分类、多模式人机交互以及多媒体的编码与理解等方面的研究;多语言交互技术课题组,主要从事自然语言处理、机器翻译相关技术研究;智能科学课题组,主要从事主体(agent)与语义计算,机器学习与数据挖掘,认知计算与图像处理;知识网格课题组,主要从事大规模分布式网络互联环境中知识、信息和服务资源共享管理的核心科学问题、关键技术和软件平台的研究;知识科学和工程课题组,主要从事知识的逻辑理论、大规模知识获取和共享研究、基于知识的关键技术研制。实验室以复杂系统和智能科学的理论与应用为主要研究方向,利用网络化环境,充分发挥多学科交叉优势,立足自动化和系统工程技术,以智能科学的理论和方法解决工程、社会、经济和国防中的复杂系统建模、分析、控制和优化等问题。实验室的发展目标是成为一个国际一流的科学研究、技术创新和人才培养的基地。实验室重点围绕精密微装配、智能装备、机器人视觉、数字装置等方面开展研究工作。针对异型微零件装配需求,解决微装配夹持器构型设计、宏/微运动机构设计、主动柔顺装配、机械手无损夹持等技术难点,掌握基于多机械手协调作业的微装配核心技术,实现微纳精度下不同尺寸零件的精密装配。针对精密机械设计、智能控制、精密检测等方面开展研究,通过自主创新和集成创新,研制出复合材料自动铺放、高精度检测等国家亟需的智能化装备与仪器。针对图像处理、目标分割、测量与控制等机器人视觉方面的共性问题开展研究,获得三维环境重构、目标识别与跟踪、定位与导航、仿生理解等关键技术,研制出实时性好、可靠性高的机器人智能视觉系统。针对大型装置/工程设计、建设和运行等过程中的数字化仿真验证需求,开展基于机理和数据的建模与分析、多约束条件下的智能优化、复杂场景的动态三维可视化等关键技术研究,形成面向大型装置/工程全生命周期的数字化装配和数字化运行系统。2. 组学数据的集成和信息挖掘,着重于数据驱动的集成性研究—通过对来自不同组学的海量生物数据进行综合系统的集成,进而从这些海量数据中进行深度挖掘,发现不同组学数据之间的关联,揭示出隐含在海量组学数据内的生物学规律和原理。3. 基因调控网络的系统组学研究,着重于系统组学层面的前沿研究—整合各类组学的研究优势,以极端环境适应、疾病发生、分化和发育以及驯养驯化等重要生物学过程中的基因调控网络等科学前沿问题为切入点,开展探索性系统组学研究。植物基因组学国家重点实验室总体定位:从我国农业发展和学科建设的需要出发,以主要农作物和经济作物以及重要模式植物为材料,以基因组的序列结构研究为出发点,系统地开展转录组学、功能基因组学、表观遗传组学和蛋白组学研究,着重于大规模新基因的鉴定、表达、功能分析和潜在应用价值的探索,推动植物生物技术的源头创新和产业化。建立我国植物基因组学理论体系和技术平台,使植物基因组学国家重点实验室成为国内植物基因组学原始性创新研究的重要基地,不断提高在国际上的竞争力和影响力。目前,实验室已达28个创新研究组规模,研究内容拓展为植物基因组的结构、演化与表达调控,重要农艺性状的功能基因组学,植物与微生物互作的分子机理,植物生物技术与分子育种等4个单元。实验室的发展处在良性上升态势。植物细胞与染色体工程国家重点实验室的总体定位是面向国家需求和国际科学前沿,运用遗传学知识和技术,深入研究主要农作物重要农艺性状形成的遗传基础,在作物遗传学和分子育种领域做出创新研究成果;综合利用各种基因转移手段,培育适合我国农业可持续发展需求的作物新品种。重点实验室在细胞凋亡、配子发生的分子机理、神经发育和神经疾病的分子机制、干细胞发育等国际前沿领域取得了重要进展。现已形成国内最完整的以线虫、果蝇、斑马鱼、爪蛙、小鼠、拟南芥和水稻等为模式生物的发育生物学研究体系,运用遗传与分子生物学手段,研究范围覆盖了生物个体发育的各个阶段。经过十多年的不懈努力,重点实验室现已形成特色突出、力量集中且结构合理的研究格局,相继建成了发育生物学的研究平台和资源库。目前承担多项国家重大研究计划项目,是我国分子发育生物学领域最活跃、体量最大、模式生物体系最完整的研究团队之一。农业水资源重点实验室立足华北缺水最严重的华北平原北部我国粮食重要产区,围绕个体水平、田间水平、区域水平农业水资源高效利用,整合相关研究力量,凝聚研究目标,通过基础理论和技术创新,提升遗传与发育生物学研究所在农业生态学领域的研究水平。微生物资源前期开发国家重点实验室定位是:根据建设创新型国家的总体战略,以国家经济和社会发展的重大需求为导向,瞄准微生物学科前沿,开展微生物资源利用的基础和应用基础研究。通过对重要微生物生命机制的认识,开发其功能,实现生物技术创新,从而为解决生物能源、工业改造、农业发展、环境保护和人口健康等相关问题提供思路、策略和途径。真菌学国家重点实验室以我国真菌资源调查、收集和保藏为基础,开展真菌的生物多样性、系统分类、分子进化、生态功能、遗传发育和代谢调控等基础及应用基础研究,促进我国生命科学进步和生物产业发展。在此基础上,构建涵盖标本、菌种、基因及代谢产物的真菌资源平台,为真菌生物资源的认识和利用、真菌病害的防治提供物质基础和技术支撑。目前实验室的主要研究方向包括:领域1-真菌多样性与系统进化;领域2-真菌群落与物种互作;领域3-真菌遗传与发育;领域4-真菌次级代谢与调控。微生物生理与代谢工程重点实验室的定位与研究方向:中国科学院微生物生理与代谢工程重点实验室定位于微生物生物技术领域的应用基础研究,围绕工业微生物生理与代谢功能的调控机制、生物合成与生理适应能力的重构及优化等关键科学问题,开展分子遗传学与高效遗传操控系统、分子酶工程与新型生物催化过程、以及分子生理学与先进代谢工程三个方向的研究,重点发展微生物生理工程与代谢工程的新技术和新方法,研发新一代工业菌种和性能先进的全细胞催化剂。植物基因组学国家重点实验室的总体定位为:从国家战略需求出发,以主要农作物、经济作物以及重要模式植物为材料,系统地开展植物和植物病原微生物的功能基因组学研究,着重于大规模新基因的克隆鉴定、功能分析和潜在应用价值的探索,推动植物生物技术的源头创新和转基因植物产业化。建立我国植物基因组学理论体系和技术平台,使实验室成为国内植物基因组学源头创新研究的中心,不断提高在国际上的竞争力和影响力。在神经发育研究方向上,重点实验室主要研究神经细胞分化、迁移、导向的分子机理,以及轴突、树突发育与神经环路形成机理。在突触可塑性与学习记忆机理研究中,着重研究神经突触形成的分子机理,胶质细胞与突触可塑性关系,抑制性突触可塑性,以及学习记忆的神经机制。感觉信息处理机制研究的重点是视觉认知的机理,嗅觉对动物社会行为的影响,味觉识别机制,以及躯体感觉机制。重点实验室针对智力发育障碍、癫痫、缺血诱导神经元死亡、病理性痛和神经退行性疾病研究神经系统疾病机理。神经干细胞研究主要集中在形态学和电生理学功能上对新生神经细胞进行研究,揭示调控神经干细胞增殖、分化、整合或凋亡的机制。(1)针对模式生物和细胞模型等研究体系,发展新型的规模化和高精度的蛋白质组成多重精确定量技术,以及蛋白质动态修饰的定量技术;然后研究不同层次的蛋白质动态行为的相互影响和作用机制。同时要整合蛋白质组学和代谢组学的研究技术和方法,开发基于生物信息学的各种"组学"平台的研究数据之间的整合技术,实现功能基因组、蛋白质组和代谢组之间数据的对接,从而系统地研究模式生物和细胞模型的蛋白质表达调控机制,并研究蛋白质的动态行为与转录调控模式之间的相互作用。结合计算生物学和生物信息学工具,发展出原创性的理论方法及算法,并进一步应用到模式生物和细胞等功能系统的定量整合研究。营养与代谢重点实验室以营养和代谢为切入点,在多组学人群研究的基础上结合分子、细胞和动物模型等不同层面机制研究,有望在中国人群的营养和代谢特征及与营养相关的慢性疾病的病因和病理机制方面取得突破性的进展,从而为建立符合中国人遗传和代谢表型特点的营养素标准、膳食指南和国家相关政策的制定提供科学依据,并为高危个体/群体的早期预测、预防和营养干预提供新的思路。通过实验室的平台促进国内外多学科和多领域的交流和合作,以及人才的培养,共同推进我国在营养与代谢研究赶超国际前沿,为我国14亿人口健康提供营养和代谢科学的理论支撑。合成生物学重点实验室在产学研紧密结合等方面具有良好的工作积累和传统优势,定位于合成生物学的应用基础研究,以发展合成生物学的理论和方法为主要研究方向,建立合成生物学的关键技术平台,针对我国在能源、环境、健康等方面面临的需求与挑战,聚焦若干重要的生物学体系,在分子、细胞和微生物菌群等层次上,实施合成生物学的研究与技术开发;并通过工业生物技术中心有效地将研究成果向社会和企业进行转让和转化。昆虫发育与进化重点实验室根据研究所发展战略、现有研究基础以及学科发展需求,通过凝练学科发展目标,确定了以下三个主要研究方向,低等昆虫分类鉴定与起源进化研究,以基因组为基础的昆虫发育研究,昆虫-植物-微生物相互关系研究:(1)低等昆虫分类鉴定与起源进化研究:重点针对中国原尾虫、跳虫和双尾虫的种类、区系、形态、生态、胚后发育和精子超微结构等进行深入系统地研究,综合利用不同分子标记,并结合发育生物学研究方法,探讨原尾纲、双尾纲和弹尾纲的系统进化关系,及其在节肢动物中的系统发生地位。(2)以组学为基础的昆虫发育研究:代表性昆虫的功能基因组研究,随着家蚕家基因组序列的完成,家蚕功能基因组研究是目前的重要发展方向。作为鳞翅目昆虫的模式种,家蚕功能基因组研究将为重要农林果蔬类鳞翅目害虫的发育及高度抗药性的产生机制提供依据,并为新型害虫治理体系的开发提供靶点基因。分子病毒与免疫重点实验室面向国家公众健康与医药卫生的战略需求,定位于具有国家战略需求的病毒学与免疫学相结合的应用基础研究,为新型疫苗及诊断技术提供新策略和新思路。实验室结合自身在病毒学、免疫学及疫苗学的科研特色与优势,围绕关系国家长远发展和人民生活质量的重大、新生及突发性传染病的预防和治疗,主要致力于:灵长类神经生物学重点实验室旨在通过发挥我国的独特优势,利用丰富的资源和合理的动物保护规范,以具有较高智力的非人灵长类动物为主要模式动物,探索和研究人类高级认知功能的大脑机制,并构建与人类脑功能和结构更为接近的非人灵长类的脑疾病模型。灵长类疾病模型的建立,不仅可以供筛选脑疾病药物,也有助于研发新一代的生理、物理治疗手段。在非人灵长类动物模型上的实验成果,将对孤独症、抑郁症和老年退行性疾病等的预防、早期诊断、早期干预、缓解和治疗有着重大的意义。分子病毒学实验室主要研究病毒结构与非编码蛋白在感染过程中的致病分子机制,以及寻找宿主细胞中的一些关键分子抗病毒的免疫保护作用机制。我们选择A型流感病毒和丙型肝炎病毒为主要模式病毒,研究病毒感染的分子机制与宿主分子的免疫抗病毒功能。以冠状病毒和手足口病毒EV71为模式病毒,研究3a和2B病毒离子通道蛋白对病毒释放的影响。在实验室创新科研和核心技术的基础上,以病毒的离子通道蛋白、聚合酶以及控制病毒复制的限制性分子为药物靶点,建立药物筛选平台,寻找有潜在治疗作用的先导化合物,把基础研究与应用基础研究紧密结合。疱疹病毒分子生物学实验室从解析病毒基因功能入手,着重研究其调控病毒与宿主间相互作用的分子机制。在与宿主长期的共同进化过程中,病毒基因演化出了精细调控细胞内信号通路的能力。因此,病毒基因功能研究一直都是研究重要的细胞分子生物学和免疫学问题的有力工具。本实验室对病毒基因与宿主细胞相互作用的研究不仅将阐明病毒基因促进病毒复制的分子机制,为抗HCMV感染药物研发提供新的靶位和思路,还极有可能揭示新的细胞分子生物学和免疫学原理。生物基材料实验室以生物基材料为对象,以化学、生物学、材料学和过程科学为基础,探索融合转化理论与方法,突破转化关键技术,开展生物基材料可持续融合转化应用基础研究,建设国家级新型生物基材料与化学品领域的研发平台,建设学科布局合理、队伍规模和结构合理,运行高效,国内外有影响的研究集体,为我国生物基材料的发展提供科技支撑。能源应用技术实验室以特色能源工程技术学科建设为基础,以自主创新的中试和产业化平台为支撑,重大任务带动特色学科发展,针对国民经济特别城镇化过程和海洋领域中的分布式能源供给和信息化管理、深海电源系统、沼气能源化利用和农田营养化修复、低碳资源高质化利用、环境高效膜系统和技术,从事特色应用基础、关键技术以及系统集成示范等方面科技创新工作,服务国民与蓝色区域经济建设中产业重大技术需求。西方科技史实验室以科学文化、比较科技史和战略研究为主要视角,研究数学、物理学、化学、生物学、高技术等学科的历史,探讨科学技术在发达国家的发展历程,认识人类创造科技知识的思维模式、组织模式与实践过程,阐释近现代科学与经济、社会、文化的互动,分析跨文化的知识传播。十年来,文化遗产科技认知实验室面向国家需求和学术前沿,致力于传统工艺等文化遗产的调查和科学技术研究,保存现状与保护技术的评估,以及文化遗产的管理研究,重视国际交流与合作。在学术研究方面,实验室将重心放在传统工艺、文物与遗址等文化遗产的调查与认知研究上,综合运用科技史、科技考古、人类学、民俗学、社会学等学科的方法,调查研究蕴含丰富的技术、科学和文化价值的传统工艺;运用理化检测、数字仿真和模拟实验等方法,开展文物科技(科技考古)研究,认知反映重大发明创造的文物与遗址的科技和文化内涵,并应用数字化技术和实物模型等展示中华民族所创造的技术和工程的深刻内涵与价值;面向我国文化遗产研究与保护事业的需求,开展创新性、综合性和集成性的理论与实践研究,为国家思想库建设和文化建设贡献知识基础与战略咨询建议。科技与社会实验室是研究学科发展规律、学科发展战略和宏观科技战略的、跨研究机构的开放性学术平台。实验室的主要任务是以历史眼光和全球视野开展科学技术发展的案例研究、科技发展规律研究、科技规划与战略研究,更好地支撑和参与国家科学思想库的建设。实验室发挥在科技史和中外科技发展比较研究等领域学者的学术积累和专长,研究重要学科交叉前沿的发展态势,研究学科发展的历史和规律,研究科技发展的中长期演进特征、规律与规划战略,研究科技史重大事件及其当代启示,研究学科发展与经济和社会的互动关系。力求把握我国学科发展的学术环境、政策要求和社会条件,开展面向社会需要、国家需要、政策规划需要、学科建设与发展需要的战略研究。实验室的重点研究方向为:中国与欧洲力学的比较,中国与欧洲宇宙论的比较,中国与古希腊数学的比较,中国与日本钢铁技术的比较,中国与德国制造技术、铁路技术的比较,自然哲学在东亚地区传播的比较,中国与欧洲传统技术图像的比较等。科学技术与社会实验室旨在推进社会学、伦理学、政治学、经济学、公共政策、公共管理等学科领域相关理论的交叉与融合,加强STS研究,特别关注中国STS问题,成为面向决策、面向公众的有全球视野的STS综合研究平台。实验室重点开展以下研究:科学运行机制及发展模式研究,科学行为规范与道德建设问题研究,科学共同体及其治理研究,新兴科技的伦理、法律与社会问题研究,科技的社会风险及其政府规制与社会治理问题研究,与科技相关的制度及政策研究,科技政策理论方法研究等。科技管理与评估实验室的主要使命是围绕国家科技管理与评估突出问题,把握科研信息化、全球化趋势,结合中国科学院实践,研究国家宏观科技管理与决策机制、科技资源配置与管理、科研机构管理与评价、科技人力资源管理以及科技项目管理与评价,为中国科学院、国家有关部门、地方政府等提供决策支持。可持续发展战略研究实验室面向国家可持续发展战略需求及重大前沿问题,综合运用多学科交叉的理论、方法和研究手段,主要开展可持续发展战略、政策与管理领域的理论、方法和应用研究,旨在为我国推进可持续发展战略、应对可持续发展重大战略问题提供科学依据、政策咨询和系统化解决方案,力争成为国内外有重要影响力的可持续发展公共政策研究与决策支持平台,并在国际可持续发展政策与管理研究领域形成独特的"中国学派"。能源环境经济研究实验室面向国家能源与环境领域的重大需求,针对国际学术前沿和我国能源战略与政策研究中的科学问题,主要围绕能源安全战略管理以及应对气候变化的市场机制开展研究,研究领域涵盖能源与经济增长、能源效率与节能、能源市场与碳市场、能源环境与气候变化、能源安全以及能源环境经济系统建模等。在学术研究的基础上,开展系统的应用研究,致力于为政府部门和企业提供能源环境经济系统的情景预测、系统分析及其前瞻性政策建议。统筹与管理实验室秉承"科研为国民经济和社会发展服务"宗旨,致力于运用运筹学、统计学、风险与应急管理理论,借助信息技术,结合应用领域专业知识,主要开展政府公共安全应急管理、企业生产安全风险管理、环境安全低碳发展规划等研究,推动管理科学理论方法研究与实践发展。政策模拟实验室致力于政策模拟技术和方法研究,丰富宏观政策分析理论,努力打造成为有国际影响力的中国公共政策模拟平台。实验室开展国家经济安全基本理论与分析技术研究,开展经济危机发生及控制理论、多区域经济发展的和谐治理理论、创新驱动下多区域经济增长理论研究,以及多国相互作用的国家经济安全政策、多区域宏观经济政策和多区域环境与发展治理政策模拟研究,发展和完善相应的政策模拟技术方法,为宏观管理部门决策提供支撑。着眼于构建国际知名、国内一流的城市发展与区域管理研究基地,城市运行和应急管理的决策智库。实验室主要从事城市化战略、城市运行与发展管理、区域经济与公共治理、现代风险与应急管理、信息化规划与决策支持系统等研究,为国家城镇化战略、政策制定提供研究支撑,发展城市运行管理理论方法、规范、标准和运行监测体系,为北京等特大城市运行与发展管理决策提供整体解决方案,为政府部门研制城市运行风险识别与决策支持平台提供整体解决方案。自然与社会交叉科学研究实验室致力于面向国家战略需求和世界科学前沿,打造交叉科学学术交流平台,开展跨学科交叉融合研究,培育交叉科学研究人才和团队,成为有国际影响力的交叉科学开放研究基地。实验室主要开展科学、技术、数学和政策科学交叉研究,识别自然与社会科学交叉问题,强化科学、技术、创新、政策科学、可持续发展等研究领域的交叉,探索社会可持续发展和新型城市化发展道路,为国家宏观决策提供研究支撑。能源与环境政策研究实验室在学术上面向能源与环境政策研究领域的国际学术前沿,针对我国能源战略与政策研究中的科学问题,采用多学科交叉的复杂系统理论和研究方法,开展系统研究,形成了六个研究方向:重点实验室面向国家战略需求和世界科技前沿,以微波电子学为基础,以突破紧凑型高功率微波源的关键技术为核心,并积极探索和发展我国高功率微波电子系统及其应用技术。近年来,重点实验室全面承担着一系列国家重大工程急需的各种大功率微波器件的研制任务,为我国雷达、火箭、电子对抗、加速器和大科学装置等的发展做出了重大贡献。传感技术国家重点实验室面向国家战略需求和世界科技前沿,以基于微电子和微机械加工技术的微传感器和系统作为主要研究方向,开展基础性、战略性、前瞻性的研究工作。实验室致力于提高我国传感技术的自主创新能力和国际竞争力,推动我国传感技术的应用和产业的发展,为国民经济建设服务,并成为我国传感技术的研究基地和高素质、高水平传感技术人才的培养基地。空间行波管研究发展实验室致力于开展空间行波管相关领域技术创新和应用基础研究;解决面向工程应用的空间行波管及放大器研发过程中的关键性、基础性和共性技术问题。同时,承担我国多种重点工程和航空航天工程用宽带连续波行波管、脉冲行波管、超小型脉冲行波管的研制和小批量生产任务。先后为我国卫星、火箭和载人航天工程等提供了十余种型号的空间行波管及放大器,并为各类电子对抗系统提供了三十多种型号的行波管,为我国做出了重要贡献。实验室拥有国内先进的行波管研制和生产工艺线;研制成功的空间行波管及放大器、宽带连续波行波管、脉冲行波管技术水平处于国内领先水平;具备多品种研制、小批量生产,以及年均研制和生产500只以上空间行波管和军用行波管的能力。星载SAR是空间对地成像观测的重要手段,具有全天时、全天候、分辨率高、成像幅宽大、可实现全球观测的特点,在国民经济及相关领域的应用发挥着重大作用。星载SAR技术涉及多个学科领域,结构复杂,研制难度大,整体水平反映了一个国家的综合科技实力。近年来实验室取得的成果:在机载SAR方面,实验室取得了多项科技创新成果。完成了我国第一部具有自主知识产权的机载合成孔径成像雷达系统的设计定型;完成我国第一部无人机载合成孔径雷达系统的研制,并高质量地完成了包括目标飞行、地图测绘、洪水监测、海洋执法维权等在内的一系列应用飞行试验;完成了我国第一部分辨率优于0.5m机载合成孔径雷达系统的研制和应用飞行试验,实现了我国合成孔径雷达技术跨越式发展的战略目标;完成了我国第一部机载干涉合成孔径雷达系统的研制,标志着我国机载合成孔径雷达技术已经从二维迈向三维,拓展了合成孔径雷达技术的新的应用领域;实现了我国第一部合成孔径雷达出口;完成了一系列关键技术的攻关,大大缩短了与国际最高水平的差距。近年来实验室取得的成果:(1)先进传感器处理技术和星地一体化仿真技术,在先进传感器处理技术和星地一体化仿真技术方面,主要面向各种新型空间传感器的数据处理和关键共性技术展开创新研究,重点完成面向海洋宽幅SAR、高分辨率极化SAR、三维干涉SAR等在研背景型号项目的成像处理方法和一体化仿真等关键技术研究,为星地一体化设计论证、地面处理和应用系统建设奠定基础理论和方法;可编程芯片与CPU、DSP一样,是一种通用器件,用户可以通过编程来实现所需要的逻辑功能,具有灵活性高、设计周期短、成本低、风险小等优势。可编程逻辑器件是国家信息产业的重要基础,是国家层次上一个具有战略性的高技术,在互联网、高速无线通信、高速图像处理等领域有着不可替代的作用,可编程逻辑器件的研制被列入国家中长期科技发展规划。信息功能材料国家重点实验室总体定位于应用基础研究,面向本领域学科发展、面向国民经济和国防建设的重大挑战,以满足国家战略需求和促进学科发展为目标,以出成果出人才为中心,瞄准超导材料、器件和电子学应用,先进硅基材料、器件和应用,新型纳电子存储材料、器件和固态存储应用以及化合物半导体材料、器件和应用等重要研究方向,在信息功能材料领域做出了大量具有重要显示度的工作,曾获得国家科技进步一等奖等多项奖励,在国内外具有重要学术地位和影响。实验室已发展成为我国信息功能材料领域研究与人才培养的重要基地。实验室长期发展目标:逐步建立无线传感网协同体系,攻克无线传感网泛在机理,成为国际无线传感网研究主导力量之一;促进我国物联网技术自主创新能力的提升。实验室十一五的目标为:在无线传感网方面,突破多层传感网的体系构架、传输的关键技术及原型设备,形成具有我国特色的自主知识产权的传感网络体系;推动我国无线传感网标准的建立。在宽带无线移动通信方面,为我国宽带无线移动通信标准提供空中接口的核心技术;建成服务宽带无线移动通信系统研究的现场试验环境和评估技术体系;建成服务国家宽带无线移动通信系统研究的国际合作中心。据国家能源科技的战略部署和国内外能源技术的发展动态,以高效率、双面受光、低成本的HIT太阳电池、锂电池储能材料与器件,储氢材料与系统为主要研究方向,力争开发出具有自主知识产权的太阳电池新器件、标准测试新技术、锂电池材料与电池,储能材料与系统、集成与制造,搭建二级和一级太阳电池标准测试与校准平台,研制出21%以上效率的HIT太阳电池,建立中试批量生产的工艺线,建立工艺规范和数据库,为其产业化奠定基础。陆地表层格局与模拟院重点实验室的研究方向:重点开展陆地表层系统的物理、化学和生物过程和格局的变化机理、驱动机制和探测技术;探索人类活动和全球变化影响下中国气候系统的时空差异及其形成机制、陆地表层系统过程的变化机理、土地利用/土地覆被变化现代过程和陆地表层系统化学元素和化学物质的迁移循环机制,以及在典型区域的耦合机制。在应用层面上,以服务我国资源、环境和可持续发展领域的重大需求为出发点,重点研究中国陆地表层过程变化的资源、环境、生态和健康效应,探索陆地表层资源环境变化的格局及区域协调管理机制,并在重点区域开展退化生态环境的修复技术。资源与环境信息系统国家重点实验室致力于地球信息科学的基础理论与方法的研究,发展地理信息系统核心技术,构建国家级行业重大应用示范系统,建立"数据-模型-软件-系统"一体化的地球信息科学研究体系,对我国地球信息科学的发展起到学科导向、应用示范及骨干人才培养的作用。陆地水循环及地表过程重点实验室以陆地水文过程为核心,以自然地理综合为特点,研究变化环境下流域水循环及其相关的地表过程变化规律与水资源演化的科学问题。近期以中国北方地区水资源及其相关的生态环境问题为切入点,面向全国,重点研究陆地水循环及表层过程中的四个基本过程,即"土壤-植被-大气"界面过程、坡地水土过程、河流水沙过程、流域水循环过程及其相互联系。通过以流域为操作平台的观测实验分析和数值模拟等手段,揭示陆地水循环及地表过程中的自然变化规律以及人文因素和全球变化的影响关系,在不断取得地理科学原创性基础研究成果的基础上,为解决水资源短缺、农业节水、水土流失治理以及与水相关的生态环境建设、旱涝灾害的防治等国家重大需求问题提供科学依据。农业政策实验室的使命是:通过严谨、科学的战略性和应用性研究,推动农业经济学科的发展,并为政府制定农业和农村发展政策提供科学的决策参考。农业政策实验室的四个核心研究项目是:农业科技政策、资源环境政策、城乡协调发展与反贫困、农产品政策分析与决策支持系统。农业政策实验室不但在管理、运行机制和人员构成等方面具有其独特性,而且在研究方面非常注重学术的前沿性,强调中心内部研究的群体性和协作性,重视数据、开展以农户和社区调查为基础的大规模实证研究,重视人力资源建设和学术交流,保持与政府部门和国内外同行的密切合作。环境水质学国家重点实验室是环境污染模拟与控制国家联合重点实验室的一个组成部分。实验室目标是面向国家解决水环境污染和饮用水安全保障问题的重大需求和国际水科学技术领域的研究前沿,深入探索天然水体和水处理过程中水质转化的基本规律,发展水处理高新技术,建立并完善环境水质学的学科体系,成为我国本领域高级科技创新人才的培养基地和自主创新平台。城市与区域生态国家重点实验室的定位:面向国家可持续发展重大需求和国际生态学前沿,以城市与区域生态系统为对象,开展复合生态系统结构-过程-格局-功能特征和演变规律研究,揭示人类活动与生态环境的相互作用机制及其调控机理,人与自然耦合机制,发展复合生态系统生态学的理论与方法,为国家生态安全、促进城市与区域的可持续发展提供科学基础与技术支持。环境生物技术重点实验室的定位是,面向学科前沿和国家重大需求,系统地开展环境生物技术的理论与应用研究。重点围绕着环境污染的生物检测与诊断、环境污染的生物过程与效应、环境污染的生物控制原理与技术三个研究方向,探索生物技术 (责任编辑:admin)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------